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Abstract

A new algorithm is presented for the solution of the shallow water equations on quasi-
uniform spherical grids. It combines a mimetic finite volume spatial discretization with
a Crank—Nicolson time discretization of fast waves and an accurate and conservative
forward-in-time advection scheme for mass and potential vorticity (PV). The algorithm
is implemented and tested on two families of grids: hexagonal-icosahedral Voronoi
grids, and modified equiangular cubed-sphere grids.

Results of a variety of tests are presented, including convergence of the discrete
scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an
isolated mountain, and a barotropically unstable jet. The results confirm a number of
desirable properties for which the scheme was designed: exact mass conservation,
very good available energy and potential enstrophy conservation, consistent mass,
PV and tracer transport, and good preservation of balance including vanishing V x V,
steady geostrophic modes, and accurate PV advection. The scheme is stable for large
wave Courant numbers and advective Courant numbers up to about 1.

In the most idealized tests the overall accuracy of the scheme appears to be limited
by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the
cubed sphere grid. On the hexagonal grid there is no evidence for damaging effects of
computational Rossby modes, despite attempts to force them explicitly.

1 Introduction

In order to achieve the parallel scalability needed to exploit future generations of su-
percomputers, weather and climate prediction models will need to use quasi-uniform
spherical grids. A significant challenge is to develop schemes that can achieve com-
parable accuracy to current state-of-the-art longitude—latitude grid models, without ex-
cessive cost (Staniforth and Thuburn, 2012). With this motivation, Thuburn and Cotter
(2012) recently presented a framework for the construction of finite volume schemes
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for the solution of the rotating shallow water equations. In this framework, key physical
properties related to conservation, balance, and potential vorticity (PV) dynamics are
obtained by ensuring that the numerical scheme mimics certain mathematical prop-
erties of the continuous governing equations. The framework makes use of a primal
polygonal grid with a C-grid placement of variables and the corresponding dual grid,
along with a set of linear operators with certain symmetry properties for mapping be-
tween the two. It extends the work of Thuburn et al. (2009) and Ringler et al. (2010) to
the case in which dual grid edges are not necessarily orthogonal to primal grid edges,
thus making it applicable to quasi-uniform cubed sphere grids, for example, as well as
Voronoi grids. However, Thuburn and Cotter (2012) did not provide any specific exam-
ples of the required linear operators for non-orthogonal grids. Here we present a set of
operators suitable for a particular class of cubed sphere grid, and compare the resulting
model with one using the Ringler et al. (2010) operators on a hexagonal-icosahedral
Voronoi grid.

1.1 Governing equations

The vector invariant form of the shallow water equations is used:

o0 B

E+V-(V¢)—O, (1)
ov. |

Sf V09 +V(@r+k) =0. (2)

Here, ¢ is the geopotential given by the fluid depth times the gravitational acceleration,
b1 = @ + Poroq is the total geopotential at the fluid’s upper surface including the contri-
bution from orography, v is the velocity, and k = |V|2/2. A superscript L indicates that
the vector in question is rotated through /2 in the positive (anticlockwise) direction:
v* = k x v where k is the unit vertical vector. Finally, v ¢q is the flux that appears in
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the conservation law for PV (derived from Egs. 1 and 2):

0(¢q)
ot

+V-(vpq) =0, 3)

where g = ¢ /@ isthe PV, ¢ = f +¢ is the absolute vorticity, and ¢ = k-V x v is the relative
vorticity.

1.2 Grids

The shallow water code we have developed is formulated for an arbitrary unstructured
grid. However, a considerable amount of grid-related information, including the oper-
ators listed in Table 3 below and the multigrid restriction and prolongation operators
(Sect. 4), needs to be generated and pre-tabulated for any given grid. So far, grid
generators and operators for two families of grids have been developed: hexagonal—
icosahedral Voronoi grids and cubed sphere grids.

The hexagonal-icosahedral grid is essentially that proposed by Heikes and Randall
(19954, b) (but without the twist). The primal grid comprises hexagonal and pentago-
nal Voronoi cells, while its dual is the corresponding Delaunay triangulation. The grid
generation code iteratively adjusts the primal grid cell centres so as to minimize a cost
function J = aygrIuRr + acJc, Where Jyg is the cost function used by Heikes and Ran-
dall (1995b), which penalizes failure of primal and dual edges to cross at their mid-
points, and J; penalizes departures of the primal cell “centres” (i.e. dual grid vertices)
from primal cell centroids. Setting (ayg, ac) = (1,0) gives the Heikes—Randall grid; set-
ting (ayr,ac) = (0, 1) gives a centroidal Voronoi grid as described by Du et al. (1999)
and used by Ringler et al. (2010), Skamarock et al. (2012). All of the results shown
below use 40 iterations of a simple cell-by-cell minimization algorithm to minimize 7
with (apg, ac) = (1,0). (A few experiments using (ayg, ac) = (0, 1) suggest that there is
only weak sensitivity of results to this choice.) The default orientation of the grid, used
in all tests below, has a pentagon at each pole.
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For the cubed sphere grid, the vertices are first positioned as on the equiangular
cubed sphere (e.g. Ronchi et al., 1996), then the dual vertices are positioned at the
barycentres of the surrounding primal vertices, and finally the primal vertices are re-
located to the barycentres of the surrounding dual vertices. The last step is needed
in order to use the H operator described in Sect. 2 below and the Appendix. It has
the effect of smoothing the grid somewhat across the cube edges, which is probably
beneficial. (Iterating the last two steps leads to further smoothing and resolution clus-
tering at the cube vertices; after many iterations the grid resembles the conformal cube
(Rancic et al., 1996). For this reason the last two steps are not iterated for the results
shown below.) The default orientation of the grid, used in all tests below, has the cube
corners at latitudes +7 /4.

Figure 1 shows coarse resolution versions of the two grids. Some characteristics of
the grids at different resolutions are given in Table 1. The resolutions on the cubed
sphere have been chosen to give approximately the same number of degrees of free-
dom as one of the hexagonal—icosahedral grids, allowing a fair comparison between
the two grid types.

2 Summary of the framework, and specific operators

The framework of Thuburn and Cotter (2012) is expressed in terms of variables inte-
grated over relevant grid elements (cells or edges) or sampled at vertices. See Table 2.
This has the advantage that many geometrical factors such as lengths and areas are
absorbed into the field variables, helping to make both the mathematical formulation
and the computer code simpler and clearer. We will use subscripts on variables (e.g.
¢; or V,) to refer to specific grid elements (geopotential at dual vertex / or circulation
integrated along dual edge e), and omit subscripts (e.g. ¢ or V) to refer to the entire
vector of these variables at all relevant grid elements; this allows the use of a compact
matrix-vector notation.
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In terms of these integrated variables, the vector calculus operations gradient, diver-
gence and curl then take particularly simple forms:

— Gradient integrated along a dual edge

G =D;¢, (4)
5 — Gradient integrated along a primal edge
-U = D1 W(V)! (5)

— Divergence integrated over a primal cell

A =DyU, (6)
— Curl integrated over a dual cell

10 = =b,v, (7)
where the sparse matrices D, Dy, D,, and D, are determined by the grid topology
and their non-zero entries are all equal to +1 or —1. The meanings of these and the
other mimetic operators are briefly summarized in Table 3 and Fig. 2. See Thuburn and
Cotter (2012) for detailed mathematical definitions and discussion.

15 Discretizing Egs. (1) and (2) in space gives

® +D,F =0, (8)
V - Q* + DyI(Pr +K) =0. (9)

Here the prognostic variables are ®;, the integral of ¢ over primal cell /, and V,, the
20 circulation along dual edge e. A time derivative is indicated by (). F, is the mass flux
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across primal edge e; it is computed from the @ and U fields using the primal grid
advection scheme — see Sect. 5. Q; is the PV flux across dual edge e. It is computed
from the C* and J‘1q fields using the dual grid advection scheme, where C;, = (WF),
is the mass flux across dual edge e, and q, = ZV/(Df,V) is the PV at primal vertex v, Z,

is the absolute vorticity integrated over dual cell v, and be,v) = (R®), is the geopotential
integrated over dual cell v.

Finally, K; is the kinetic energy per unit mass integrated over primal cell /. Motivated
by the fact that the discrete approximation to the global integral of kinetic energy is
given

1
5 2 VeUe, (10)
e

(Thuburn and Cotter, 2012), initial testing used K, defined by distributing V,U,/4 to
the cells either side of edge e. However, although this is first-order accurate on the
hexagonal Voronoi grid, it is not on the cubed sphere grid, and convergence of the
maximum ¢ error was observed to stall for the solid body rotation test case (Sect. 6.5).
Therefore, an alternative scheme is used for all results presented below. A constant
vector velocity u; is constructed for each cell / that gives a least squares best fit to the
V, at the edges of that cell. The kinetic energy in cell / is then approximated by |u,-|2/2
times the area of cell /.

Provided the operators satisfy certain symmetry conditions, this framework ensures
a number of desirable properties for the scheme.

— The placement of degrees of freedom is that of a polygonal C-grid, which helps
to ensure an accurate representation of the geostrophic adjustment process
(Arakawa and Lamb, 1977).

— Equation (8) is manifestly in conservative form, ensuring conservation of mass.
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—T
— It is a topological identity that D, = —D,; this, together with the condition that the

matrices | and H should be symmetric, provides a discrete analogue of the prop-
erty that V is minus the adjoint of V- ( ), ensuring that the geopotential gradient
term is energy conserving for the linearized shallow water equations.

The condition that W should be antisymmetric ensures that the Coriolis term is
energy conserving for the linearized shallow water equations.

Another topological identity is that 5261 = 0, which leads to a discrete analogue
of the identity V x V = 0; this ensures that the geopotential gradient term cannot
act as a source of vorticity or potential vorticity.

The R operator must be local and conservative, so that the global integral of any
variable ® over the primal grid is equal to the global integral of ®v = R over
the dual grid. This property enables the construction of a unique W that satisfies
-D,W = RD,, (as well as antisymmetry), as described by Thuburn et al. (2009).
Provided W and R are related in this way, any non-divergent velocity field can be
balanced by some @ field, and will produce no vorticity via the Coriolis term; in
other words, the scheme can support geostrophically balanced flows.

— 2
A corollory is that the linearized potential vorticity = /@ — o /@ is steady for

the linearized equations. (Here 5 is the reference geopotential for the lineariza-
tion.)

Finally, this property can be extended to the nonlinear case following the approach
of Lin and Rood (1997), in the following sense: we can define a PV flux Q, by
discretizing the PV conservation law

%(¢q)+V~O:O, (11)
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where Q = v ¢q; then, by substituting this Q, in Eq. (9), the PV can be made to
evolve exactly as if we were to integrate Eq. (11) directly, even though we actually
integrate Egs. (8) and (9). This means we can use any desired advection scheme
to compute the PV flux, giving a high degree of control over the PV evolution.

Here we have emphasized conservation of energy only for the linearized equations.
If desired, a scheme can be constructed that conserves energy for the full nonlinear
system (Thuburn and Cotter, 2012). However, this requires a somewhat artificial con-
struction of the PV flux. The philosophy adopted here is that we prefer to have the PV
evolve according to a chosen advection scheme, maximizing our control of the PV. Up-
wind advection schemes of the sort described below are inherently damping on small
scales, leading to dissipation of potential enstrophy and, to some extent, energy. Kent
et al. (2012) and Thuburn et al. (2013) discuss the extent to which this approach can
provide an implicit subgrid model capturing cascades of potential enstrophy and energy
for two-dimensional vortical flow.

All of the above properties are quite general. It remains to define specific instances
of the I, H, J, and R operators for the two grids used here.

For the hexagonal-icosahedral grid, the I, H and J operators implemented are all
diagonal, i.e. their stencil is a single cell or edge. This is just the translation into the
present framework of the operators used by Thuburn et al. (2009) and Ringler et al.
(2010).

1/A;, i'=i
I,‘,‘/= / " I_, I., (12)
0, I #1,

where A; is the area of primal cell /. This | operator will be first-order accurate pro-
vided the dual vertex / lies within primal cell /. (It would be second-order accurate on
a centroidal Voronoi grid.)

/ "=
Hee’ = e/dev 9, © (13)
0, e #£e,
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where /, is the length of primal edge e and d, is the length of dual edge e. On an
orthogonal grid this diagonal H will be first-order accurate provided the primal and
dual edges do intersect each other, and will be second-order accurate if the grid is
constructed so that the intersection point approaches the midpoint of both the primal
edge and the dual edge as resolution is increased (Heikes and Randall, 1995b). Finally,

(v) '

1/A)°, v =v,

Jy = / Y ' (14)
0, vV £V,

where Af,") is the area of dual cell v. This J operator will be first-order accurate provided
the primal vertex v lies within dual cell v. The R operator is defined as in Ringler et al.
(2010), in which the mapping weights are proportional to the overlap area between pri-
mal and dual cells. This operator is first-order accurate. The W operator is constructed
from R following Thuburn et al. (2009).

For the cubed sphere grid, | and J are again the diagonal operators defined by
Egs. (12) and (14). However, because the primal and dual edges are not orthogo-
nal to each other, a diagonal H operator would be inconsistent (i.e. not even first-order
accurate). Instead we use the following:

U _ z l(Veder - Ve/de)'de/
¢ e'#eeS Sc |de X de’l

(15)

The stencil S comprises the five edges nearest to edge e, including edge e itself. d,
is a vector of magnitude d, in the direction of dual edge e. Subscript ¢ refers to the
corner formed by the edges e and €'. s, = 4 when dual edges e and ¢’ are edges of
the same quadrilateral, and s, = 6 when dual edges e and ¢’ are edges of the same
triangle. This operator exactly converts V' to U for a constant velocity field on a plane,
and is therefore first-order accurate, provided the primal grid vertices are located at the
barycentres of the surrounding dual vertices. See the Appendix for more details. The
construction works when the dual cells are either quadrilaterals or triangles. Again, the
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R operator is defined as in Ringler et al. (2010) and W is constructed from R following
Thuburn et al. (2009).

3 Time integration scheme

The time integration scheme is motivated by the observation that a Crank—Nicolson
scheme gives a robustly stable treatment of fast waves, with sufficient accuracy to cap-
ture geostrophic adjustment, while a forward-in-time finite volume advection scheme
can provide exact mass conservation and stability up to Courant number ~ 1 while ac-
curately capturing Lagrangian conservation. Therefore, consider the following scheme,
obtained by integrating Eqgs. (8) and (9) over a time interval At:

™1~ " +D,F =0, (16)
_—t

VT v - QY + DD +K) =0. (17)

Here,

v = (ﬁw” + aw”*‘) At (18)

indicates a (possibly off-centred) trapezoidal approximation to the Eulerian time integral
for any variable y, F is the time integral of the mass flux, given by the primal grid

advection scheme using the time integrated fluxes Ut, and Q" is the time integral of the
potential vorticity flux, given by the dual grid advection scheme using the mass fluxes
C* = WF.

All of the results presented below, except in Sect. 6.8, use a centred approximation
to the time integral: @ = 8 = 0.5.
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4 Iterative solution and Helmholtz problem

The K, F and @* terms in Egs. (16) and (17) depend nonlinearly on the values of the
predicted variables at step n+ 1. Hence we must solve a coupled nonlinear system of
equations at each step. An incremental iterative approach is used. Let " and V") be
our estimates for ®"*' and V"*" after / iterations, and let Rg and R, be the associated
residuals in the @ and V' equations:

Rg = @) - ®" + D,F, (19)
_ 1t

R, =V —v"—Q* + DI(P1 +K) , (20)

where 6 quantities, including the velocities used for advection, are evaluated using

the latest available estimates. Seek increments @', V' that will reduce the residuals

towards zero:

®' + altDy(¢p"HV') = —Ry, (21)
V' + aAtDID’ = -R,,. (22)

Here ¢ is a reference geopotential field defined at cell edges. In the current implemen-
tation it is updated at each time step based on ¢ at step n. This approach resembles
Newton’s method with an approximate Jacobian.

Eliminating IV’ leaves a Helmholtz problem for ®':

a®At?Dy(¢"HD4ID') - ' = Ry, — aAtD,(¢"HR). (23)

A variety of methods are possible for solving the Helmholtz problem. The current im-

plementation uses a single sweep of a full multigrid method (e.g. Fulton et al., 1986),

which provides more than sufficient accuracy in the context of the iterative nonlinear

solver. Once @' is found, back-substitution gives V', and then the latest estimates for
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® and V are updated: @'V = ") + @', Y+ =y L V', The first guess is given by
the value at the previous step: ®© = ", V© = .

In the tests described below, the residuals R4, and R, typically decrease by an order
of magnitude at each iteration (by up to two orders of magnitude per iteration at very
high resolution with short time step). Four iterations are comfortably enough to achieve
stable results, and it might be feasible to use fewer iterations operationally.

5 Advection scheme

The advection scheme is a so-called forward-in-time scheme, a kind of finite volume
scheme. (The approach is also referred to as “swept area” or “incremental remapping”.)
The time integral of the flux across a cell edge is replaced by a spatial integral of the
advected field over the area swept across the edge during one time step. The idea
is an extension to two dimensions and more general grids of the schemes described
by Crowley (1968), Tremback et al. (1987), Leonard (1979) and Leonard et al. (1993,
1995). Similar schemes have been described by Thuburn (1997), Lashley (2002), Lip-
scomb and Ringler (2005), Miura (2007), and Skamarock and Menchaca (2010). The
swept area integral is computed by approximating the subgrid distribution of the ad-
vected field as a polynomial in terms of local x and y coordinates. The code has been
implemented for an arbitrary degree polynomial (though with some approximations);
the results below focus on the case of a quadratic fit. Some details are described in the
following subsections.

5.1 Construction of stencils

A polynomial subgrid distribution of the advected field is constructed for each grid cell.
A polynomial of degree d in two dimensions has (d + 1)(d +2)/2 coefficients, and
SO requires at least this many pieces of information in order to determine the coeffi-
cients, i.e. we need a stencil of at least this size. The stencil should be as isotropic and
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symmetrical as possible to ensure that the construction of the fit is well conditioned,
and because the same subgrid reconstruction is used for all the downstream edges of
the given cell.

The stencil is grown iteratively, as follows.

— First sweep: the stencil comprises only the cell in question.

— Subsequent sweeps: if there are sufficient cells in the stencil then stop. If not then
make a list of all cells that are not yet in the stencil but are neighbours of cells
in the stencil. If any cells in the list are neighbours of two or more stencil cells
then add these to the stencil and finish this sweep. Otherwise, add all the cells in
the list (which are neighbours of only one stencil cell) to the stencil and finish this
sweep.

Figure 3 illustrates how the stencil is grown on three different grids in order to fit
quartic polynomials, which need at least 15 stencil cells. The numbers indicate the
number of the sweep in which the cell is added to the stencil. (The triangular case is
relevant to PV advection on the dual of the hexagonal grid.) Note that the details of the
stencil vary near anomalous regions of the grid such as pentagons or cube corners;
these cases are left as an exercise for the interested reader!

5.2 Constructing the polynomial fit

We wish to construct a polynomial fit for cell / so as to fit the given data, which are
grid cell area integrals ®; in each of the corresponding stencil cells. However, the
stencil constructed using the above scheme will almost always contain more cells than
needed to determine the polynomial coefficients; we have an overdetermined problem.
An obvious solution is to construct a least squares fit to the data. However, Lashley
(2002) found that this gave unstable results. He obtained stable results by demanding
that the central cell be fitted exactly, with a least squares fit to the rest of the data.
Here we generalize this idea by demanding an exact fit to the data in some substencil
containing the central cell, with a least squares fit to the rest of the data.
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For any cell /, let B (x) be a set of basis functions for the subgrid fit, so that

P(xX) = D a,By(x), (24)
k

where the coefficients a, are to be determined. (Later the basis functions will be chosen
to be monomials, 1, x, y, x2,... etc, but for now we keep the theory general.) It is then
a straightforward exercise in linear algebra to show that

a, = zck‘/qu (25)
J

for some matrix C. For each cell /, the matrix C can be computed provided we can
evaluate the integral of B, (x) over each stencil cell. Moreover, the C’s do not change
in time, so they can be evaluated just once at the start of the integration and stored for
later use.

One matrix C needs to be stored for each cell. Typical sizes of C per cell are 6 x 7
for a quadratic fit on a hexagonal grid (up to 7 stencil cells to determine 6 coefficients)
and 15 x 19 for a quartic fit on a hexagonal grid (up to 19 stencil cells to determine 15
coefficients).

There is some freedom in the choice of substencil to be fitted exactly. All of the results
shown below fit only the central cell exactly.

5.3 Local coordinate system

In the current scheme the basis functions B, (x) are monomials in local coordinates x
and y. We choose a local coordinate system that approaches Cartesian as the ratio of
grid length to Earth’s radius tends to zero, and for which the results are independent of
the choice of direction of the x axis.
The origin of the coordinate system is taken to be the centre of the cell in question,
X, say. The direction of the x axis is defined to be the direction from x, to the centre
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of an arbitrarily chosen neighbouring cell. This choice is simply a matter of convention;
identical results should be obtained for other choices. Then for any point x in the neigh-
bourhood of x, it is straightforward to compute the spherical distance s between xg
and x, and the angle 6 between the x axis and the line joining x, to x. Finally, the local
coordinates are given by

X =5c0sf; y=ssing. (26)
5.4 Integrals of monomials

The basis functions B, are chosen to be the set of monomials in x and y up to some
chosen degree d, for example, {1,x,y,x%, xy,y?} for d = 2. (It may be verified that the
space of functions spanned by the basis is independent of the choice of x-axis.) For
each cell /, the construction of the subgrid fit requires the integral L, of the kth basis
function over the jth stencil cell, for all kK and j. These are computed as follows.

The stencil cell is subdivided into subtriangles by joining its centre to each ver-
tex. For each subtriangle, three approximate Gauss points are found by computing
Xg=(4x;+X; + x,)/6, where {i,j, k} is a cyclic permutation of the indices of the three
subtriangle vertices, and then projecting x4 back onto the unit sphere. The correspond-
ing Gaussian weights are given by 1/3 of the true spherical triangle area. The integrals
of the monomials over the subtriangle are thus evaluated by (approximate) Gaussian
integration. The integrals over the stencil cell are obtained by summing over the corre-
sponding subtriangles.

Three point Gaussian integration would be exact for integration of polynomials up to
degree 2 for planar triangles. For spherical triangles it remains very accurate. Three
point Gaussian integration is not exact for higher degree polynomials, even for planar
triangles. However, because the stencil cell is subdivided into several triangles, the
approximate integrals are still very accurate for d = 4.
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5.5 Construction of swept area

The area swept across an edge during a time step is approximated as a parallelogram
in the local x—y coordinate system of the upwind cell. The displacement in the normal

direction is given by 7' and in the tangential direction by Vt, where v and v are the
normal and tangential velocity components, making appropriate allowance for sign. On
the primal grid v is obtained from U and v is obtained from U* = HV/* where V/* = WU.
On the dual grid v is obtained from VV* and v is obtained from V.

5.6 Integral over swept area

The swept area integral is evaluated by Gaussian integration over the parallelogram
area. Sufficient Gauss points are used to evaluate the swept area integral exactly on
a plane: 2 x 2 for a quadratic subgrid fit, 3 x 3 for a quartic subgrid fit. (The affine
transformation that transforms a rectangle into a parallelogram also transforms the
rectangle’s Gauss points into the parallelogram’s Gauss points.)

On the primal grid, we wish to ensure that a constant ¢ field remains constant in
a non-divergent flow. This requires that the subgrid reconstruction of a constant ¢ field
should be constant, and also that the swept area integrals should be proportional to the
velocity fluxes, so that the mass fluxes are non-divergent. The subgrid reconstruction

described above preserves a constant. To ensure non-divergent mass fluxes for non-
—t
divergent velocity the Gaussian weights are normalized by the swept area: Ag,, = U,.

One dimensional experiments and stability analysis (Sect. 6.1) revealed the need for
an important modification to this swept area calculation:
—t
Ue

Agwe = ,
e T 11 BAL(IDUN),,

(27)

where (ID2U”)up is the divergence at time level n in the cell upwind of edge e. This
modification is essential for stability when the advection of mass is coupled to the
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momentum equation. It may be interpreted as allowing for the time-integrated effect of
the divergence on the swept area.

5.7 Advection of tracers: primal grid

We require two important properties of the advection scheme:
i. A constant ¢ field should remain constant in non-divergent flow.
ii. A constant tracer mixing ratio should remain constant.

On the primal grid, the first of these properties is guaranteed by the construction of
the swept area integral described above.

The prognostic variables for primal grid tracers are assumed to be “concentrations”,
e.g. [ = ¢y where y is the “mixing ratio”, and they are stored as area integrals (anal-
ogous to d). Provided the same subgrid reconstruction scheme is applied to the area
integrals of I' as is applied to @, the scheme will preserve a constant mixing ratio,
because the subgrid distributions of I' and ¢ will be proportional to each other. (A flux
limiter could also be used to ensure preservation of a constant mixing ratio, but has not
been implemented for the results shown below.)

5.8 Dual grid advection

The spatial discretization implies that there exists a dual grid mass field

oM = RP (28)
that satisfies its own mass continuity equation

bW _B,ct =0, (29)

where C* = WF. In other words, predicting the oV directly using Eq. (29) would give
the same result as predicting @ then diagnosing N using Eq. (28).
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To ensure that this property continues to hold for finite time steps, and in particular
that properties (i) and (ii) hold on the dual grid, we must ensure that the dual grid
advection is based on the time integrated mass fluxes C* = WF. Note that C* must be

built in this way using the W operator; constructing a dual cell subgrid fit from the N
1

data and a swept area based on Vt would give a different result for which Egs. (28)
and (29) are not consistent. Also note that there is no need to modify the swept mass
to allow for divergence, as in Eq. (27); this has already been taken into account in the
calculation of F. B

The mass flux C* determines a swept mass My, = C; rather than a swept area.
Therefore, in order to ensure preservation of a constant tracer mixing ratio, the subgrid
reconstruction must be for the mixing ratio rather than the concentration, so that the
swept integral is evaluated as

/ v dM (30)
rather than
/F dA. (31)

The rest of the calculation is the same as for primal grid advection, except that the
Gaussian weights are normalized by the swept mass rather than the swept area.
6 Results

A variety of tests have been applied to test the stability and different aspects of accu-
racy of the scheme on the hexagonal-icosahedral and cubed sphere grids. A particular
focus is on the properties listed in Sect. 2.
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6.1 Stability

The stability of the scheme was investigated by applying it, with appropriate simplifica-
tions, to the one-dimensional shallow water equations. Specifically, for small perturba-
tions to simple basic states with constant ¢ and v, the system matrix was generated
numerically in order to compute the frequencies and structures of the eigenmodes.
Provided the effect of divergence on swept area is included, as in Sect. 5.6, then, with
a = (8 = 0.5, the scheme was found to be stable for large gravity wave Courant numbers
and advective Courant numbers up to about 0.75, with only very small instability growth
rate for advective Courant numbers between 0.75 and 1.0. A very small off-centring,
a = 0.502, was enough to obtain stability for advective Courant numbers up to 1.

All testing of the two-dimensional shallow water model presented below has used
a = B = 0.5. In practice the model is found to be stable for large gravity wave Courant
numbers and advective Courant numbers less than about 1.

6.2 Convergence of Laplacian

Using the operators listed in Table 3, a discrete inplacian operator can be built for
scalars defined at the centres of primal cells (ID,HD,) and for scalars defined at the

centres of dual cells (—JD2H'1D1). Examining the convergence of the discrete Lapla-
cian provides a basic test of the accuracy of some of the discrete operators. Moreover,
the primal grid Laplacian arises when the discrete linearized mass and momentum
equations are combined to obtain a discrete wave equation, and also in the vortic-
ity form of the expression for geostrophic balance. Thus, the accuracy of the primal
grid Laplacian will influence the accuracy with which gravity wave propagation and
geostrophic balance are captured.

The code was used to test the convergence with increasing resolution of the primal
grid discrete scalar Laplacian applied to the function cos@sinl (here ¢ is latitude, A
is longitude). The results are given in Table 4. For the hexagonal grid, the L, error is
almost second order while the L, error is first order or a little better. For the cubed
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sphere grid the L, error is almost first order, while the L ., error does not decrease with
increasing resolution.

The test was repeated for the dual grid discrete scalar Laplacian. (Again see Table 4.)
For the hexagonal grid the L, error is approximately first order while the L, error
appears to be close to first order until the finest resolution where convergence almost
stalls. For the cubed sphere grid the L, error is worse than first order, and the L , error
does not decrease as resolution is refined.

A vector Laplacian can also be built from the operators in Table 3 (see Thuburn and
Cotter, 2012). Its convergence was found to be similar to that of the dual grid scalar
Laplacian on both the hexagonal and cubed sphere grids (not shown).

6.3 Convergence of Coriolis operator

Although the R operator is at least first-order accurate, this does not imply any guar-
antee of accuracy of the W operator constructed from it. On a regular hexagonal or
square grid on a plane, both R and W would be second-order accurate. However, for
the distorted polygons of the quasi-uniform spherical grids the convergence rate must
be checked empirically.

A stream function equal to cos ¢ sinA for a rotational flow was defined and sampled
at both primal cell centres (y) and primal vertices (w(")). Dual edge normal fluxes were
then calculated both directly from the stream function (V* = D) and by applying the
W operator to primal edge normal fluxes (Valpprox = WU = -WD;, u/(")). The difference

between Vj,0x @nd V', after dividing by the lengths of the corresponding dual edges,
gives a measure of the accuracy of W. The variations of the L , and L, errors with
resolution are listed in Table 5. A similar calculation was carried out for a divergent
flow by defining a velocity potential equal to cos @ sinA, sampled at primal cell centres
(¥) and at primal vertices (y")). The L, and L, differences D,y - HWHD, y (after
dividing by primal edge lengths) are also shown in Table 5.
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On both grids the L, error fails to converge to zero, while the L, error converges
very slowly, roughly proportional to the square root of the grid spacing, or O(N‘1/4) on
a grid with N cells. This is consistent with the observation that O(1) errors are found
along the lines joining the pentagons on the hexagonal—-icosahedral grid and along the

cube edges on the cubed sphere grid, thus affecting O(N1/2) edges. The errors on the
cubed sphere are significantly larger than those on the hexagonal—icosahedral grid.

6.4

Advection

Test case 1 of Williamson et al. (1992) tests the advection scheme in isolation from the
rest of the dynamics. A cosine bell profile tracer is advected once around the sphere
by a solid body rotation flow. We have carried out this test on both the hexagonal—
icosahedral and cubed sphere grids, for tracers stored on both primal and dual cells, at
a range of grid resolutions and for flow at different angles relative to the grid. Figure 4
shows a sample of results. Generally the advection scheme shows

accurate phase speed, with weak dispersion error;

some erosion of the maximum but with rather isotropic error field (the cubed
sphere case in Fig. 4 is rather unusual in that the flow is aligned with the grid,
leading to more elongation than broadening of the tracer profile);

weak undershoots provided the tracer is well resolved;
little sensitivity to the grid (hexagonal or cubed sphere, primal or dual);

little grid imprinting, as measured by the evolution of errors as the cosine bell
crosses grid features such as pentagons or cube corners;

a convergence rate close to second order or better, depending on the error norm,
at the resolutions tested.

6888

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/6867/2013/gmdd-6-6867-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/6867/2013/gmdd-6-6867-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

The advection scheme has also been tested using a quartic subgrid fit d = 4. This
option is considerably more expensive than the quadratic fit d = 2. The qualitative fea-
tures of the results are rather similar to the d = 2 case. Generally the errors are re-
duced in magnitude by a factor in the range 3-5, though the convergence rate remains
close to second order. Undershoots are a little worse on poorly resolved data. All of the
results shown in later sections use d = 2.

Several factors could reduce the convergence rate below the third order and fifth
order rates expected in the ideal case for quadratic and quartic subgrid fits, respectively.
These factors include the approximation of the swept area as a parallelogram (Ullrich
et al., 2013), the use of approximate quadrature in the quartic case, and the lack of
perfect smoothness of the initial data (Holdaway et al., 2008). The parallelogram swept
area should be an excellent approximation for the solid body flow of this test case.
The observed convergence rates are consistent with the results of Holdaway et al.
(2008) (case n = 2 in their Table ), suggesting that smoothness of the initial data is the
dominant factor limiting the convergence rate.

We have also experimented with fitting a larger substencil exactly. In most cases this
leads to a reduction in the errors. However, for advection on the dual of the hexagonal
grid with d = 4 the scheme became unstable, for reasons we do not yet understand.
All of the results shown below use exact fitting only to the central stencil cell.

6.5 Solid body rotation

The solid body rotation test case, test case 2 of Williamson et al. (1992), tests the
ability of the scheme to maintain a steady, balanced, large-scale flow. Since the flow is
steady, the exact solution is known, allowing the calculation of errors and convergence
rates.

Table 6 shows L, and L, errors for ¢ and v at day 5 vs. resolution for the two grid
types. The time steps used are given in Table 1. At the resolutions tested, v converges
at close to second order on both grids, while ¢ converges at somewhere between first
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and second order. At any given resolution the errors are considerably smaller on the
hexagonal—icosahedral grid than on the cubed sphere grid.

Maps of the error in ¢ on both grids (Fig. 5) show small scale and large scale com-
ponents. The small-scale errors are concentrated along the lines joining the pentagons
on the hexagonal grid and along the cube edges on the cubed sphere grid. They are
stationary, and are present at their full amplitude after just a few time steps. The large
scale error reflects the symmetry of the grid: zonal wavenumber 5 and antisymmetric
about the equator for the hexagonal—-icosahedral grid, zonal wavenumber 4 and sym-
metric about the equator for the cubed sphere. This component is also stationary; it
gradually emerges over about three days of integration.

6.6 Flow over an isolated mountain

A more complex flow field is produced in test case 5 of Williamson et al. (1992). An
initial geostrophically balanced solid body rotation velocity field impinges on an isolated
conical mountain at northern mid-latitudes. The mountain triggers the radiation of fast
inertio-gravity waves and slow Rossby waves.

Maps of the surface height field produced by the model at day 15 appear very similar
to those published in the literature for other models. To obtain more detailed informa-
tion we therefore examine the errors in the height field. Test case 5 has no analytical
formula for the true solution, so a high-resolution reference solution was generated
using the ENDGame shallow water model (Zerroukat et al., 2009), which uses a well
tested semi-implicit semi-Lagrangian solution scheme on a longitude-latitude C-grid.
The reference solution is generated at a grid resolution 1024 x 512, and a time step
At = 225s. Standard semi-Lagrangian advection of ¢ (rather than SLICE) was used.
The high-resolution solution for the surface height A was interpolated to all of the de-
sired test grids and resolutions using cubic Lagrange interpolation (the same scheme
as used for semi-Lagrangian advection). Each test model computed a height error
field by reading in the corresponding reference solution and subtracting it from the test
model solution.
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As well as the mimetic finite volume scheme on the hexagonal and cubed sphere
grids, errors were also calculated for the ENDGame shallow water model at similar
resolutions, for comparison.

All three models were found to run stably with the time steps given in Table 1. How-
ever, all three models produced almost identical height error fields (not shown), despite
the use of very different grids and numerics. Moreover, convergence of the errors to-
wards zero stalled between the two finest resolutions tested, for all models and all error
norms. The common feature of the numerics of the three models is the semi-implicit
treatment of gravity waves, which will artificially slow the highest frequency waves.
Such waves are present at large amplitude because of the “impulsive” start to the test
case. The evidence suggests that this slowing of gravity waves is the dominant source
of error in all three models.

It is an encouraging result that the mimetic finite volume model produces such similar
errors to ENDGame when using time steps of the size that would be used in practice
at these resolutions. However, it is also of interest to try to assess the errors arising
from the spatial discretization and the grid. To do this, the test case was repeated for all
three models with Af reduced by a factor of 4 on each grid in order to reduce the time
truncation errors. The resulting error norms for height are shown in Table 7. All three
models appear to be converging at a rate somewhere between first and second order,
depending on the norm chosen. (Note that, because of the lack of smoothness of the
forcing mountain, we cannot expect better than first-order convergence of L (h), even
with a high-order scheme.) At any given resolution, the hexagonal and cubed sphere
grids have rather similar errors, while those from ENDGame are typically (though not
always) slightly smaller.

The height error fields for the three models at the second highest resolution are
shown in Fig. 6. Even with the reduced time step used here, there are noticeable sim-
ilarities among the three models in both the length scales and the details of the error
patterns, which are suggestive of wave trains radiating globally from the forcing moun-
tain.
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In order to examine some aspects of behaviour that depend on the mimetic proper-
ties of the scheme, the test case was run to 50 days at the highest resolution given
in Table 7 (with At =900s). After about 20 days the PV dynamics becomes strongly
nonlinear, leading to the production of thin PV filaments which stretch and wrap up,
localized sharp PV gradients, and a cascade of potential enstrophy to small scales.
Figure 7 shows the PV at day 50 on the cubed sphere grid. It shows the the produc-
tion of PV filaments and sharp gradients, with no noise or other unphysical behaviour
apparent. Results on the hexagonal grid are similar.

Figure 8 shows several diagnostics of behaviour related to the mimetic properties,
again for the cubed sphere case. (The hexagonal grid case is very similar.) The top left
panel shows the relative change in total mass, and confirms that this is at the level of
round-off error. Equation (29) implies that advecting a dual grid tracer initialized with the
dual grid geopotential should give the same result as diagnosing the dual grid geopo-
tential from the predicted primal grid geopotential at each time step. The continuous
curve in the top right panel shows the maximum absolute difference between these
two dual grid ¢ fields, normalized by the maximum value of the field. The normalized
difference is of order 107°. Although the difference is tiny, it is significantly larger than
round-off error. This is due to incomplete convergence of the nonlinear iterative solver;
increasing the number of iterations from 4 to 8 reduces the discrepancy by a factor of
10°. The construction of the @* Coriolis term ensures that the PV diagnosed from the
predicted ® and V fields evolves as if it were a passive tracer advected by the mass
fluxes F*. The dashed curve in the top right panel shows the normalized maximum
absolute difference between PV diagnosed at each time step and an advected tracer
initialized with the PV field. The differences are at the level of round-off error.

The available potential energy is given by

/% (o1 —(pr))? dA (32)

where (@) is the global mean of ¢+. It gives an upper bound on the amount of potential
energy that could be converted to kinetic energy, and is typically much smaller than the
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total potential energy. The bottom left panel of Fig. 8 shows the available potential
energy, kinetic energy and their sum (total available energy). There is a significant
conversion of available potential energy to kinetic energy over the 50 days, but their sum
is well conserved. The bottom right panel shows the relative change in total available
energy (continuous curve) and also the relative change in total potential enstrophy
(dashed curve). As discussed in Sect. 2, the numerical methods are designed not to
conserve these quantities exactly but to allow a transfer to unresolved scales when
there are significant nonlinear cascades. In fact, during the first 15 days of this test
case the flow is only weakly nonlinear and any downscale cascades are rather weak.
During this time the losses of available energy and potential enstrophy are very small,
of order 1 part per thousand.

6.7 Barotropically unstable jet

The test case described by Galewsky et al. (2004) produces a rapidly growing
barotropic instability from a strong, narrow mid-latitude zonal jet. The true solution at
day 6 has the instability localized over a certain range of longitudes with part of the jet
remaining almost quiescent. Schemes with significant grid imprinting tend to excite the
instability all along the jet, possibly with an incorrect zonal wavenumber. The test case
is dominated by strongly nonlinear PV advection with rapid generation of small scales
by straining and vortex roll-up. A good scheme should produce no small-scale noise or
unphysical rippling in the PV or vorticity field. Since the features of interest can easily
be identified from maps of vorticity, full fields rather than errors are presented.

Finer resolution is needed for this test case than the earlier ones. Also, since the
maximum velocity is around 80ms‘1, the time step is halved for all models and grids
compared to the values given in Table 1.

Figure 9 shows the vorticity field at day 6 on the hexagonal grid with 10242 and
163 842 cells, the cubed sphere grid with 13824 and 221 184 cells, and, for reference,
from ENDGame with 640 x 320 cells. The ENDGame solution is similar to other pub-
lished high resolution solutions (e.g. Li and Xiao, 2010; Salehipour et al., 2013). All of
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the results show a clean vorticity field, free from noise and spurious ripples. However,
at the coarser resolutions shown, the finite volume model shows strong grid imprinting,
with the wavenumber of the instability determined by the grid structure. At the finer
resolutions shown, the finite volume model solutions are more similar to the reference
solution, but both show significantly stronger development of the instability over the
longitude range [ /2, 7] than the reference solution, implying that truncation errors are
still significant even at these fine resolutions.

6.8 Balance

One of the main motivations for the development of the mimetic numerical method is
the requirement for the numerical model to respect balance. In the regimes of small
Rossby or Froude number, the generation of imbalance in the form of fast waves from
an initially balanced flow should be very weak (e.g. Ford et al., 2000; Cullen, 2000).
A numerical model should not generate excessive imbalance, and, ideally, should not
require artificial damping mechanisms to control imbalance. A thorough investigation of
this issue requires an examination of how the model performs in the asymptotic limits
of small Rossby or Froude number (Cullen, 2007, 2008); this is the subject of ongo-
ing work. For present purposes we examine some simple diagnostics of imbalance in
the barotropic instability test case, applied to the mimetic finite volume model and, for
comparison, to ENDGame.
For each model a series of three integrations was run.

— (a) The model was integrated with a centred semi-implicit time integration scheme
(a = 0.5). The initial perturbation applied to the jet in the barotropic instability test
case is unbalanced. With a = 0.5 it is found that the fast waves resulting from
the initial perturbation dominate the divergence field throughout the integration to
day 6.

— (b) The model was run again using a fully off-centred scheme (a = 1.0). This is
found to suppress the fast waves within about one day. The divergence pattern is
6894
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now very different: it is collocated with the vortex rolls of the evolving barotropic
instability and grows along with them, confirming that it is slaved to the balanced
dynamics rather associated with fast waves. However, the use of @ = 1.0 could be
suppressing any numerically generated imbalance.

— (c) Therefore, for the third integration we set a = 1.0 for the first 500 steps (a little
over 31 h) and a = 0.5 thereafter. This removes the imbalance associated with the
initial perturbation, but would avoid artificially suppressing any imbalance (physi-
cal or numerical) generated subsequently as the instability grows.

Figure 10 shows the divergence field at day 6 from the mimetic finite volume model
on the hexagonal grid for the three integrations (a), (b), and (c). It confirms the be-
haviour described above, and shows that the results of runs (b) and (c) are almost
identical. Very similar behaviour is found on the cubed sphere grid and for ENDGame.
Figure 11 shows time series of the root-mean-square divergence from the three mod-
els. It shows that the evolution of the divergence is very similar in runs (b) and (c) for all
three models. These results confirm that any generation of imbalance by the mimetic
finite volume scheme is extremely weak and is comparable to that in ENDGame.

6.9 Computational modes

Dispersion analysis for the regular hexagonal C-grid on a plane (Thuburn, 2008) shows
that it supports an extra family of Rossby modes. These are characterised by small-
scale vorticity and PV structures. Although they correctly have zero frequency on an
f-plane (in zero background flow), on a B-plane their frequencies are anomalously
small and strongly sensitive to the detailed formulation of the Coriolis operator. These
unphysical aspects of their behaviour lead to concerns that these extra modes might
adversely affect solutions, for example through the appearance of noise or through an
incorrect response to forcing.

The following argument suggests that the extra modes should be harmless provided
PV advection is well handled (see also Weller, 2012). Small scale Rossby waves have
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very small intrinsic frequency. In the presence of a background flow their absolute
frequency is dominated by advection and Doppler shifting. Although these extra Rossby
modes have excessively small intrinsic frequency, their absolute frequency will be quite
accurate provided PV advection is adequately captured. Moreover, in order to avoid
dispersion errors, an advection scheme must be inherently damping on small scales,
so advection by a background wind should tend to damp the extra Rossby modes. The
mimetic finite volume model discussed here is designed to have good PV advection
properties, so we expect the above argument to hold.

To test this argument, test case 5 of Williamson et al. (1992) was run to day 15 on
a hexagonal grid of 10242 cells, then two patches of grid scale noise in the vorticity
field were superposed on the solution. The noise patches were generated by starting
with a zero stream function, introducing a “seed” delta function in the desired regions,
applying a number of iterations of antidiffusion but with extrema limited to some max-
imum value to grow the patch, constructing a rotational velocity perturbation from the
stream function, normalizing the maximum velocity perturbation to 1 ms'1, and adding
to the model’s velocity field. The pattern generated in the vorticity field this way has
structure very similar to that of the smallest scale extra Rossby modes. One patch of
noise was introduced on the equator near (7,0) and the other near the north pole.

The evolution of the vorticity field over the next few time steps is shown in Fig. 12.
The equatorial patch is located in a region of relatively strong wind, and it is found
to be rapidly damped, almost completely disappearing within 2h. The polar patch is
located in a region of relatively weak wind. It is damped more slowly, and preferentially
on the side that experiences slightly stronger wind. Nevertheless, after 24 h the noise
has been almost completely removed.

7 Conclusions

A new finite volume shallow water model on the sphere has been described. The
formulation allows the use of arbitrary polygonal grids, motivated by the need for
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quasi-uniform spherical grids to enable parallel scalability. Results of several test cases
have been presented for two particular grids: a hexagonal-icosahedral Voronoi grid and
a modified equiangular cubed sphere grid.

The model uses a new time integration scheme (Sect. 3). It combines a semi-implicit
treatment of fast waves with a forward-in-time advection scheme for mass and for the
potential vorticity fluxes that appear in the velocity equation. Provided the advective
swept areas are modified to allow for the effect of divergence (Eq. 27), this scheme
is found to be stable and robust for advective Courant numbers up to about one and
for wave Courant numbers greater than one, without the need for off-centring of the
semi-implicit part of the scheme or other additional damping mechanisms.

The scheme is built around a framework that allows it to mimic key mathematical
properties of the continuous equations that underpin important physical properties
such as mass conservation, linear energy conservation, an accurate representation
of balance and potential vorticity dynamics, and consistent advection of mass, PV and
tracers. We have presented diagnostics (e.g. Sects. 6.6 and 6.8) confirming that these
properties are obtained in practice.

The gradient, divergence and curl operators D4, D,, D4, and D, are exact within
this finite volume framework, while the other operators I, J, H, and R are at least first-
order accurate. However, a limitation of the scheme presented here is that the Coriolis
operator W, which is crucial to some of the mimetic properties, is not, in fact numerically
consistent (Sect. 6.3). Nevertheless, the model solution does appear to be converging
at the resolutions tested in the idealized solid body rotation test case (Sect. 6.5), though
the error patterns clearly reflect the grid structure. For the more complex flow of the
isolated mountain test case the errors are comparable to those of a state-of-the-art
semi-implicit semi-Lagrangian model on a longitude-latitude grid. For the barotropic
instability test case (Sect. 6.7) truncation errors spuriously trigger the development
of the instability even at quite fine resolution, though the solution does appear to be
approaching the reference solution as resolution is increased. Thus, although the use
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of an inconsistent operator is unappealing, it is not clear that it will prevent convergence
in flows of realistic complexity.

The errors for both the Laplacian operator and the Coriolis operator are significantly
larger on the cubed sphere than on the hexagonal-icosahedral grid. The solution errors
in the solid body rotation test are also significantly larger on the cubed sphere than on
the hexagonal—-icosahedral grid. However, for the isolated mountain test case the errors
on the two grid types are comparable. In this case the errors appear to dominated by
time truncation errors associated with the implicit treatment of gravity waves, rather
than the spatial discretization. Finally, both grids appear to show a similar degree of
spurious development in the barotropic instability test case, though some features are
slightly better captured on the hexagonal grid.

In the test cases carried out, there is no evidence for any damaging effects of the
extra Rossby modes supported on the hexagonal C-grid. When grid scale vorticity
features, which should project strongly onto the extra Rossby modes, are forced into
the solution, the model remains robust and the numerics are able to remove the noise
on the advective timescale.

Because of the requirement of symmetry for the I, H and J operators, the construc-
tion of higher-order versions appears to be difficult. The construction of a consistent
W operator appears to be even more difficult. The construction of W from R with the
desired mimetic properties is only known for the case in which the stencil for R is the
set of primal cells overlapped by each dual cell; and in this case the resulting W is
uniquely determined (Thuburn et al., 2009). Motivated by these apparent limitations
on the mimetic finite volume scheme, we are currently investigating the use of a fi-
nite element approach (Cotter and Shipton, 2012), which can give the same mimetic
properties as the scheme presented here but with more accurate basic operators. This
will help to determine whether the accuracy of the basic operators is indeed a limiting
factor for solution accuracy.
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Appendix A

H operator for the cubed sphere grid

In this appendix we give details of the construction of the H operator used on the cubed
sphere. To begin with, consider the case of planar geometry. The operator is required
to be symmetric (H,, = H,,) and to be consistent, i.e. to give the exact result for
a constant velocity field.

The construction proceeds by defining an expression for the total kinetic energy

1 1 1
K=5 2 Velo=5 D VeHooVor = 3 SWolle-Ue. (A1)
e c

e, e’

Here the last expression involves a sum over every corner of every dual cell, with
a suitably defined weight w, and velocity vector u.. We define u, to be the constant
velocity vector that is consistent with the circulations along the two dual edges that form
the corner. Let d,, = d,m,, and let corner ¢ be bounded by edges e and e’ (Fig. 13).
Then we require

V.=u,-dy; Vo=u,d,. (A2)

It is easily verified (for example by writing u, = k x (Ad, + Bd ) and solving for A and
B) that

1

u, = a_k x(V,d,-V,d,) (A3)
C

where

a.=k-d,xd,. (A4)
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The weight w, should be proportional to the contribution of corner ¢ to the area of
its dual cell. For a quadrilateral dual cell

aAY = |al (A5)
(o]

while for a triangular dual cell

s 6AY = |agl, (A6)
C
where in each case the sum is over the corners of dual cell v. Therefore we define
1
we = —lad (A7)
C

where s, = 4 or s, = 6 according to whether c¢ is a corner of a quadrilateral or a trian-
gular dual cell, respectively.

10 The expression for K is manifestly quadratic and symmetric in I/, and therefore the
implied H must be symmetric. An explicit expression for U in terms of I/, and hence for
H, is obtained from

10K < lad o,

°T 2o, L L5, ¢y,
a
==>> 12| u,-kxd,
c Scéc
1 (Vedel_Velde)'del
5 = — : (A8)
25

e,#eess |do x dg|

4

where ¢’ is the index of the edge that meets edge e at corner ¢ in dual cell v.
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Finally, we must verify the consistency of the scheme. For a constant velocity field u
we have V/, = u-d, Ve and we require U, = u-n,l,. Substituting for I/, in Eq. (A8), the
requirement becomes

1 a,
D ——=dg xk=ln,, (A9)
e'#eeS Sclacl

or, taking k x this expression,

1 a,
D> ——=dg =g, (A10)
e'#£eeS Sc lag|

This requirement is satisfied if the grid is built such that primal vertices are located at
the barycentres of the corresponding dual cells, i.e. the position vector of each primal
vertex should be given by the average of the position vectors of the surrounding dual
vertices.

This construction works for quadrilateral or triangular dual cells, for which the dual
cell area and hence the weights |a.| can be built from contributions of the form of
Eq. (A4), but not for other polygons. In spherical geometry the H operator implied by
Eq. (A8) remains symmetric, and the errors introduced by the spherical geometry are
second order, so the scheme remains consistent.

Supplementary material related to this article is available online at
http://www.geosci-model-dev-discuss.net/6/6867/2013/
gmdd-6-6867-2013-supplement.zip.
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Table 1. Grid characteristics. The second to seventh columns give number of cells, total number water model

of degrees of freedom (cells plus edges), maximum dual edge length (i.e. distance between

neighbouring cell centres — a guide to the resolution), the ratio of maximum to minimum primal ) J. Thuburn et al.
edge length, the ratio of maximum to minimum dual edge length, and the ratio of maximumto &
minimum primal cell area; the last three give a guide to grid uniformity. The last column gives 5
the time step used at each resolution in the advection and solid body rotation tests. g' _
-
Grid Cells DoF Maxd (km) Max//Min/ Maxd/Mind MaxA/MinA At (s s - -
H 42 162 :OO?): /125 ! 1.14 ! 1.13 = S
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642 2562 1081 1.92 1.26 1.07 7200
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10242 40962 273 2.08 1.28 1.07 1800 g
40962 163842 137 2.13 1.29 1.07 900 o - -
Cube 54 162 3349 1.38 1.67 1.44 e
(1 itn) 216 648 1661 1.47 1.25 1.63 T - -
864 2592 834 1.46 1.33 1.72 7200 S —
3456 10368 417 1.44 1.37 174 3600 © Bak  Close
13824 41472 208 1.43 1.39 1.74 1800 -
55296 165888 104 1.42 1.40 1.74 900 _I
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Table 2. Summary of the variables used in the discretization. Lower case variable names in-
dicate values sampled at a point while upper case indicates integrated values. Superscript
(v) indicates a value at a primal vertex or dual cell, to distinguish it from a variable of the same
name at a dual vertex or primal cell. Here, n, is the unit normal to primal edge e and t, = kxn_;
m, is the unit tangent to dual edge e and s, = k x m,,.

Discrete Integral definition Description
variable
b; Geopotential sampled at dual vertex 7
Xis L(,V) Velocity potential sampled at dual vertex / or
primal vertex v Title Page
v, u/,(,v) Stream function sampled at dual vertex / or
primal vertex v Abstract Introduction
V, Javal edge oV " Me d/ Circulation along dual edge e :
U, orimal edge o ¥ * Mo 0/ Flux across primal edge e Conclusions  References
V{ Javat odge 0V *Sed = = [4a1 oage oV M, d/ Fl_ux across dual edge e S Figures
U; primal edge e ¥ -t,dl = - /primal edge oV Mo d/ Circulation along primal edge e
C, dual edge ¢ PV - Me d/ Mass circulation along dual edge e
Fe primal edge ¢ PV - Me d/ Mass flux across primal edge e 1< >
C, Jauat eage ¢ PV *Sed! = = a1 cage ,Pv*-m,d/  Mass flux across a dual edge e
Fy Jorimat eage e @Y “Ted = = [ i cage o PV M dl Mass circulation along primal edge e = .
G, dual edge ¢ V¢-m,d/ Geopotential gradient integrated along dual Back Close
edge e
b, /primal cell  PAA Geopotential integrated over primal cell / Full Screen / Esc
ol [ st el v @IA Geopotential integrated over dual cell v
A(v) primal cell ;V-vdA . vaergence !ntegrated over primal cell / Printer-friendly Version
A Javarcen v V-V AA = [4aicon K-V x v dA Divergence integrated over dual cell v
Ef,v) Javat cen v K-V x VdA Relative vorticity integrated over dual cell v Interactive Discussion
Zf,v) Jauat cen v € 9A Absolute vorticity integrated over dual cell v
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Table 3. Summary of mimetic operators.

Operator Purpose

I Converts primal cell area integrals to dual vertex point values

J Converts dual cell area integrals to primal vertex point values

H Converts dual edge integrals of tangential components of a vector (circula-
tions) to primal edge integrals of normal components of the vector (fluxes)

D, Given primal vertex values of a scalar, computes primal edge integrals of its
gradient

D, Given primal grid fluxes, computes primal cell integrals of their divergence

D, Given dual vertex values of a scalar, computes dual edge integrals of its gra-
dient

D, Given dual edge circulations, computes dual cell area integrals of their curl

R Converts primal cell area integrals to dual cell area integrals

w Converts primal edge fluxes to dual edge fluxes
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Table 4. Convergence of the primal and dual grid scalar Laplacians.

Grid & Cells Primal Dual
L err L, err Loerr Lyerr
Hex
42 0.80x10° 044x1073 0.34  0.12
162 0.23x10° 0.12x107° 0.18  0.084
642 0.73x10™* 0.33x107* 0.091 0.047
2562 0.29x10™* 0.89x107° 0.046 0.024
10242 0.14x10™* 0.24x107° 0.024 0.012
40962 0.78x10™° 0.78x107° 0.019  0.0065
Cube
54 0.21 0.12 0.10  0.070
216 0.36 0.10 0.059 0.025
864 0.41 0.064 0.050 0.012
3456 0.43 0.035 0.093  0.0076
13824 0.44 0.018 0.12  0.0052
55296 0.45 0.0092 0.13  0.0036
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Table 5. Convergence of W operator used to construct the Coriolis terms.

Grid & Cells Rotational flow Divergent flow
L err L,err L err L, err
Hex
42 059x107" 0.34x 107" 0.78x 107" 0.45x 107"
162 0.49x107" 0.16x 107" 052x10"" 0.18x 107"
642 0.35x10"" 0.69x 1072 0.35x107" 0.71x1072
2562 0.29x10™" 0.37x 1072 0.28x10"' 0.38x 1072
10242 0.23x10"' 0.25x 1072 0.23x10"" 0.26x 1072
40962 0.23x107" 0.20x1072 0.23x 107" 0.20x 1072
163842 0.23x10™" 0.14x1072 023x107" 0.14x1072
Cube
54 0.68x10"' 0.38x107" 0.65x10™" 0.23x 107"
216 0.12 0.41x 107" 0.85x 107" 0.41x107"
864 0.14 0.29x 107" 0.11 0.29 x 10~
3456 0.15 0.19x 107" 0.13 0.20x 107"
13824 0.15 0.13x 107" 0.14 0.15x 107"
55296 0.15 0.95x 1072 0.15 0.11x 107"
221184 0.15 0.67 x 1072 0.15 0.75x 1072
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Table 6. Geopotential errors (m”s™) and velocity errors (ms™') at day 5 for the solid body = J. Thuburn et al.
rotation test case. 2
(2}
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Grid & Cells  Lo(@) Lo(®) Lov) Lo(v) S TEEE
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Hex =
642 49.33 104.77 0.780 1.93 -t?g - -
2562 14.19 32.25 0.218 0.533
10242 3.81 9.00 0.0561 0.144 o i i
40962 1.01 3.41 0.0140 0.0365 )
o Tadbes  Figues
Cube =
864 24550 490.84 1.94 532 o e s
3456 74.67 167.98 0576 1.613 S
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Table 7. Height errors (m) for test case 5, with reduced time steps.

Model & Grid Cells L (h) Ly(h) Ly(h)
Mimetic 642 49.14 67.90 268.72
FV hex 2562 19.29 2576 105.54
10242 583 745 26.69

40962 1.86 260 13.30

Mimetic 864 47.80 68.64 278.92
FV cube 3456 22.60 31.35 121.28
13824 651 859 3227

55206 1.52 201  9.47

ENDGame 40x20 41.02 57.65 248.55
Long-lat 80x40 13.48 17.49 61.63
160x80 4.33 552 19.68

320x160 1.29 1.88  10.40
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Fig. 1. Left: a hexagonal-icosahedral grid with 162 cells and 642 degrees of freedom. Right:
a cubed-sphere grid with 216 cells and 648 degrees of freedom. Continuous lines are primal

grid edges, dotted lines are dual grid edges.
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Fig. 2. Schematic showing how the various mimetic operators map between the different fields

used on the polygonal C-grid.
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Fig. 3. Schematics showing how the advection scheme stencils are iteratively constructed on
various grid structures. A number m indicates a cell added to the stencil at the mth sweep.
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Fig. 4. Cosine bell advection test. Left: final ¢ field, contour interval 100; 0 and 500 contours
are bold. Right: final error field, contour interval 40; negative and zero contours are bold. Top:
hexagonal-icosahedral grid with 10242 cells. Bottom: cubed sphere grid with 13824 cells.
A quadratic subgrid fit was used with a time step of 1800s. The coarse-resolution grids shown
in the background are for orientation only.
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Fig. 5. Geopotential error (m?s2) after 5 days for the solid body rotation test case. Left:
a hexagonal—-icosahedral grid with 10242 cells. Right: a cubed-sphere grid with 13824 cells.
In each case 11 evenly spaced contours (i.e. 10 intervals) are used between the minimum and

maximum values.
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Fig. 6. Height error at day 15 of the isolated mountain test case for the mimetic finite volume
model on a hexagonal grid of 10242 cells (top), the mimetic finite volume model on a cubed
sphere grid of 13824 cells (middle), and for ENDGame on a longitude-latitude grid of 160 x 80
cells (bottom). In each case 11 evenly spaced contours (i.e. 10 intervals) are used between the
minimum and maximum values. The mountain is centred at coordinates (7/2,7/6).
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Fig. 7. Potential vorticity at day 50 for test case 5 modelled on a cubed sphere grid of

55296 cells. The contour interval is 2 x 10" '°sm™2, and the 0 and +2 x 10~° contours use
double line thickness.
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Fig. 8. Diagnostics demonstrating the effects of the mimetic properties. Top left: relative change
in total mass. Top right: maximum relative discrepancy between advected dual grid tracer
and diagnosed dual grid ¢ (solid), and between advected dual grid tracer and diagnosed PV
(dashed). Bottom left: available potential energy (dotted), kinetic energy (dashed), and total
available energy (solid) all in m®s~2. Bottom right: relative change in total available energy
(solid) and in potential enstrophy (dashed).
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Fig. 9. Vorticity field at day 6 for the barotropic instability test case. Row 1: hexagonal grid,
Row 4: cubed sphere grid 221184 cells. Row 5: ENDGame 640 x 320 cells. The plotted domain

10242 cells. Row 2: hexagonal grid, 163842 cells. Row 3: cubed sphere grid

is 0° to 360° longitude, 10° to 80° latitude. Contour interval 2 x 10
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Fig. 10. Divergence field at day 6 from three integrations of the mimetic finite volume model on
a hexagonal grid of 163842 faces. Top: a = 0.5. Middle: a = 1.0. Bottom: a = 1.0 for 500 steps

then a = 0.5. Contour interval 4 x 10
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, zero and negative contours are bold.
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Fig. 11. Time series of root-mean-square divergence. Top: hexagonal grid. Middle: cubed
sphere grid. Bottom: ENDGame. Dashed curves are for a = 1.0. Solid curves are for a = 1.0
for 500 steps then a = 0.5. The solid and dashed curves almost overlay each other.
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Fig. 12. Evolution of grid scale vorticity noise added at day 15 of Williamson et al. (1992) test
case 5. Contour interval 5x 107°s™". Left: equatorial noise patch; right: polar noise patch. First
row: step 720 (day 15); second row: step 724 (day 15 + 2 h); third row: step 768 (day 16).

6924

| Jadeq uoissnosigq | Jeded uoissnosiq | Jaded uoissnosiqg

Jaded uoissnosiq

GMDD
6, 6867-6925, 2013

Mimetic shallow
water model

J. Thuburn et al.

(8
K ()


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/6867/2013/gmdd-6-6867-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/6867/2013/gmdd-6-6867-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

Fig. 13. Schematic illustrating some of the grid elements used in the construction of the H

operator on the cubed sphere.
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